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M C Néel1, A Abdennadher2 and M Joelson3

1 UMRA Climat Sol Environnement, INRA of Avignon, Domaine Saint Paul-Site Agroparc,
F-84914 Avignon Cedex 9, France
2 Department of Mathematics, Institut National des Sciences Appliquées et de Technologie,
Centre Urbain Nord, BP 676 Cedex 1080 Charguia Tunis, Tunisia
3 Faculty of Science, University of Avignon, 33 rue Pasteur, F-84000 Avignon, France

E-mail: mcneel@avignon.inra.fr, ali.abdennadher@insat.rnu.tn and
maminirina.joelson@univ-avignon.fr

Received 5 February 2007, in final form 21 May 2007
Published 3 July 2007
Online at stacks.iop.org/JPhysA/40/8299

Abstract
Lévy flights, which are Markovian continuous time random walks possibly
accounting for extreme events, serve frequently as small-scale models for the
spreading of matter in heterogeneous media. Among them, Brownian motion
is a particular case where Fick’s law holds: for a cloud of walkers, the flux is
proportional to the gradient of the probability density of finding a particle at
some place. Lévy flights resemble Brownian motion, except that jump lengths
are distributed according to an α-stable Lévy law, possibly showing heavy
tails and skewness. For α between 1 and 2, a fractional form of Fick’s law is
known to hold in infinite media: that the flux is proportional to a combination
of fractional derivatives or the order of α − 1 of the density of walkers was
obtained as a consequence of a fractional dispersion equation. We present a
direct and natural proof of this result, based upon a novel definition of usual
fractional derivatives, involving a convolution and a limiting process. Taking
account of the thus obtained fractional Fick’s law yields fractional dispersion
equation for smooth densities. The method adapts to domains, limited by
boundaries possibly implying non-trivial modifications to this equation.

PACS numbers: 05.60.−k, 46.65.+g, 05.40.Fb, 02.60.Nm

1. Introduction

Anomalous spreading occurs ‘ubiquitously in Nature’ [1], within the framework of processes
which may be Markovian or not. Here, disregarding memory effects, we focus on the first case,
and more especially on the spreading of matter in heterogeneous media when it shows heavy
tails, not compatible with the notion of a mean-square displacement. A seminal example, in
the field of charge transport, was illustrated in [2, 3], and many others followed in various

1751-8113/07/298299+16$30.00 © 2007 IOP Publishing Ltd Printed in the UK 8299

http://dx.doi.org/10.1088/1751-8113/40/29/007
mailto:mcneel@avignon.inra.fr
mailto:ali.abdennadher@insat.rnu.tn
mailto:maminirina.joelson@univ-avignon.fr
http://stacks.iop.org/JPhysA/40/8299


8300 M C Néel et al

domains of physics, biology or economics [4–6]. Among them environmental sciences are
well represented, with many data for solute spreading in underground porous media [7, 8],
conveniently described by space-fractional dispersion equations [9–12].

A celebrated family of continuous time random walks, called Lévy flights, serves as a
small-scale model for anomalous transport (of charge in semiconductors or of a solute in sand
columns or in aquifers among many examples) in this context. The correspondence between
Lévy flights and space-fractional dispersion equations was thoroughly studied [13–23]. And a
fractional variant of Fick’s law was shown to hold [24] in infinite media for the concentration
of a solute or any cloud of particles, spreading according to a space fractional dispersion
equation, thus confirming an intuition of [25]. Also starting from a dispersion equation
involving fractional derivatives with respect to space and time, the relationship between flux
and concentration has been addressed in [27], in the words of underground transport. And the
flux of particles performing a special class of random walks with memory and Gaussian jump
length has been computed in [26].

In semi-infinite or bounded media, it may be necessary to modify space fractional
dispersion equations [28–30], depending on the physical properties of the boundaries limiting
the domain. This is due to the non-local character of fractional derivatives. For symmetric
Lévy flights in a half-space limited by a reflective barrier, the result was stated by considering
the even extension of the density of spreading particles, then making use of Fourier’s analysis.
Nevertheless, many practical situations involve boundaries and also other possible causes
of skewness. Stable laws, which are tightly associated with non-normal spreading, may
be skewed, and disregarding this possibility would desprive us of a significant part of the
possibilities, offered by fractional dispersion equations. Hence a tool, able to model boundary
data and skewed Lévy flights, is highly desirable. Moreover, it is allowed to hope that directly
connecting flux and density may give more insight into practical situations, possibly involving
singularities due to sources or sinks.

In fact, counting particles crossing a definite location per unit of time yields the flux
corresponding to a random walk, in an infinite, semi-infinite or bounded medium, for a given
concentration profile. In general, measurements correspond to time and length scales much
larger than those of particle motions, which we therefore let tend to zero. We present here a
novel expression for the left inverse of Riemann–Liouville’s fractional integrals [31, 32], which
allows us to address the diffusive limit of the operator, mapping concentration to small-scale
flux, for Lévy flights. With this tool, we follow a route, different from that of many authors
[13–23] who studied the diffusive limit of the concentration for specified initial data and, then,
noted that it satisfies a space-fractional dispersion equation. We state a fractional variant of
Fick’s law, valid for possibly non-smooth concentration profiles which may occur if there are
sources. The method will adapt to problems with boundaries more easily than the usual route
based upon Fourier’s analysis, that is well suited for infinite media but not comfortable when
there are boundaries. Combined with mass conservation principle, the fractional Fick’s law
results in equations, ruling the evolution of the density of a cloud of walkers. For the moment,
we concentrate on the dimension one.

To do this, we first note that, for Lévy flights the flux computed on the scale of particle
motion, depends on the parameters of the random walk and on the concentration at considered
time. For a Markovian process, such as Lévy flights, the latter resumes the influence of the
past. This includes initial data, which do not need being specified in our reasoning, except
when we take examples. The passage to the macroscopic scale is then performed by taking the
limit of the operator mapping flux to concentration, when time and length scales of the random
walk tend to zero while satisfying some scaling law, analogous to that used in [20, 21]. A
novel expression for the left inverse of Riemann–Liouville fractional integrals is stated, which
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allows us to see that the above-mentioned limit combines two kinds of fractional derivatives.
We thus arrive at a fractional generalization of Fick’s law for symmetric or skewed Lévy flights
in infinite media or with a reflective boundary. From this we deduce the fractional dispersion
equation for the evolution of the density of particles, and already known results are retrieved,
for the diffusive limit of random walks in infinite media or in domains with boundaries under
symmetry assumptions. Less classical situations for skewed Lévy flights with a boundary are
considered, and illustrated by direct Monte Carlo simulations.

2. The flux of particles performing Lévy flights

For particles performing a Markovian random walk, the flux depends on the concentration and
on the transition probability density function. It also depends on the geometry of the medium
and on the physical properties of the boundaries, if there are, as we will see. After having
set these points, we will focus on what happens to the flux when time and length scales of
the random walk are made small, compared with those, characterizing the variations of the
density of the cloud of particles.

2.1. Physical setting

Consider a cloud of independent walkers, performing Lévy flights: each of them makes
successive instantaneous jump, separated by pausing times. Jump amplitudes are independent
variables, with density ϕl(x) = 1

l
Lθ

α

(
x
l

)
. Here, Lθ

α denotes the density of a normalized Lévy
law of stability index α and skewness parameter θ [33–35], whose essential properties are
recalled in appendix A. Waiting times are also independent, and for the sake of simplicity we
assume here that they are distributed according to the density ψτ (t) = 1

τ
e− t

τ , though more
general possibilities were considered by [36]. Here, τ is the mean waiting time and l is a
length scale.

Let P(x, t) be the density of the probability of finding a walker in [x, x + dx] at time
t. The flux through the abscissa x is the balance of particles crossing x to the right or to the
left during [t, t + dt[, divided by dt . Moreover, the probability of making no jump during
time interval [0, t] is e− t

τ . Hence, the probability of making exactly one jump during [0, t]

is τ−1
∫ t

0 e− t ′
τ e− t−t ′

τ dt ′ = t
τ

e− t
τ . During [t, t + dt] or [0, dt], we obtain dt

τ
. Therefore, the

probability of making one jump during infinitesimal time interval [t, t + dt[ is dt
τ

. And the
probability of making more than one jump is of the order of dt2.

Hence, when the random walk takes place in an infinite medium, the flux is equal to

∞Wα,θ
l,τ (x, t)P = τ−1

[∫ ∞

0
P(x − y, t)F +

α,θ

(y

l

)
dy −

∫ ∞

0
P(x + y, t)F−

α,θ

(−y

l

)
dy

]
,

(1)

with F +
α,θ (y/ l) being the probability

∫ +∞
y

1
l
Lα,θ (z/ l) dz = ∫ +∞

y/l
Lα,θ (z) dz for a jump to be to

the right while having an amplitude of more than y. Similarly, F−
α,θ (−y/l) is the probability∫ −y

−∞
1
l
Lα,θ (z/ l) dz for a jump to have a modulus of more than y, but to the left.

The expression giving the flux may be modified more or less deeply by the presence of
a boundary, depending on whether it is allowed to release particles or not [37, 38]. Two
examples illustrate this point.
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2.2. With a boundary

We may imagine an absorbing boundary [38] such that walkers are killed when hitting the
wall: after that they no longer contribute to the random walk. Then, expression (1) holds, with
HP in place of P in the right-hand side. Here H denotes Heavisde’s function, if the wall is
located at x = 0, as will be supposed here.

Oppositely, imagine that each particle hitting a purely reflecting wall (here located at
x = 0) bounces and finally flies the length of the jump, which had been assigned to it before
the shock, but remains on the same side (x > 0) of the wall [28]. In this case, we have to
take account of two points when counting particles crossing x to the left or to the right. First,
jumps directed to the left and starting from x + y (y > 0) arrive at the right of x hence do not
enter the balance if the amplitude is larger than 2x + y. Second, jumps directed to the left and
starting from x − y, with 0 < y < x, may cross x to the right if the amplitude is of more than
2x − y. Consequently, in this case the flux is given by the mapping 0Wα,θ

l,τ (x, t) defined by

0Wα,θ
l,τ (x, t)P = τ−1

[ ∫ x

0
P(x − y, t)

[
F +

α,θ

(y

l

)
+ F−

α,θ

(
y − 2x

l

)]
dy

−
∫ ∞

0
P(x + y, t)

[
F +

α,θ

(−y

l

)
− F−

α,θ

(−2x − y

l

)]
dy

]
.

Setting P ∗(x, t) = P(x, t) for x > 0 and P ∗(x, t) = P(−x, t) for x < 0 (even extension
of P) we obtain

0Wα,θ
l,τ (x, t)P = τ−1

∫ ∞

0
P ∗(x − y, t)F +

α,θ

(y

l

)
dy − τ−1

∫ ∞

0
P(x + y, t)F−

α,θ

(−y

l

)
dy

− τ−1
∫ ∞

x

P ∗(x − y, t)

(
F +

α,θ

(y

l

)
− F−

α,θ

(−y

l

))
dy. (2)

2.3. Taking the macroscopic limit

Let us look at what happens to operators ∞Wα,θ
l,τ (x, t) and 0Wα,θ

l,τ (x, t) when we let l and τ

become small, compared with measurements scales. Fractional dispersion equations were
shown to hold in the diffusive limit provided the scaling lα/τ = K [18, 20, 21] holds,
which implies τ−1 = Kl−α in (1) and (2). We address the limiting behaviour of mappings
∞Wα,θ

l,τ (x, t) and 0Wα,θ
l,τ (x, t) in this context.

In expressions (1) and (2), we therefore will take the limit of differences between terms of
the form of l−α

∫ ∞
0 P(x ∓y, t)F±

α,θ

(±y

l

)
dy when l tends to zero, while the function P remains

fixed. Let us show that the limit combines derivatives of the order of α − 1.

3. A novel fractional tool

That Lévy statistics correspond to fractional partial differential equations is now well known,
since stable densities are fundamental solutions [39]. We will see that in the diffusive limit
the flux of a cloud of particles performing one-dimensional Lévy flights can be thought of as
being a combination of fractional derivatives of the density of walkers. In this purpose, let us
first see that taking the limit of certain convolution yields a fractional derivative.

3.1. A novel expression for the left inverse of Riemann–Liouville’s integrals

Riemann–Liouville and Marchaud’s derivatives of the order of α′ between 0 and 1 are defined
in appendix B by explicit formulae. Marchaud’s right-sided derivative Dα′

− yields the left
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inverse of right-sided integrals Iα′
− in Iα′

− (Lp] − ∞, a]), with p between 1 and 1/α′ [31].
Riemann–Liouville’s derivative Dα′

− computes the left inverse of right-sided integrals Iα′
−

in Iα′
− (Lp[a, +∞[∩L1[a, +∞[) only [32, 40]. Hence, both right-sided derivatives coincide

in Iα′
+ (Lp[a, +∞[∩L1[a, +∞[). Marchaud’s definition allows us to consider functions not

tending to zero very rapidly near infinity, but needs some care in view of the singularity at
point x. We will see that the limit, when l tends to zero, of l−α

∫ ∞
0 f (x ± y)F

(±y

l

)
dy is the

left inverse of Iα−1
± , hence a derivative of order α − 1.

Not surprisingly, the claimed result holds under definite assumptions for F. To be more
precise, we will say that F, integrable over [0, +∞[, satisfies hypothesis H1 if

∫ ∞
0 F(y) dy = 0.

For α between 1 and 2, it satisfies hypothesis H2(α) if in a neighbourhood of +∞ it is of the
form F1(y) + Cy−α , with F1 and F1(y)yα−1 being integrable. With these notations, we have
the following theorem:

Theorem. Let F satisfy H1 and H2(α), with α in ]1, 2[. Let p satisfy 1 � p < 1/(α − 1).

(i) Then, for f in Iα−1
− Lp[a, +∞[, the limit (in Lp[a, +∞[) of l−α

∫ ∞
0 f (x +y)F

(
y

l

)
dy when

l tends to zero is
∫ +∞

0 Iα−1
+ (HF)(s) ds × Dα−1

− f (x+).
(ii) For f in Iα−1

+ Lp]−∞, a], the limit (in Lp]−∞, a]) of l−α
∫ ∞

0 f (x − y)F
(

y

l

)
dy when l

tends to zero is
∫ +∞

0 Iα−1
+ (HF)(s) ds × Dα−1

+ f (x−).

Proof. It is enough to prove (i), identical arguments serve for (ii). �

Due to theorem 6.1 of [31], from f ∈ Iα−1
− Lp[a, +∞[ we deduce that we have

f (x) = Iα−1
− ϕ(x) with ϕ(x) = Dα−1

− f (x) (in Lp[a, +∞[) being Marchaud’s derivative
of f . Hence, in order to prove point (i), let us compare function ϕ and the limit of
l−α

∫ ∞
0 f (. + y)F

(
y

l

)
dy under assumptions H1 − H2(α). We have

l−α

∫ ∞

0

(
Iα−1
− ϕ

)
(x + t)F

(
t

l

)
dt = l−α

�(α − 1)

∫ +∞

0
F

(
t

l

) ∫ +∞

x+t

ϕ(y)(y − x − t)α−2 dy dt.

Setting t = lT and then y = x + ls in the right-hand side, we obtain that the above expression
is equal to

1

�(α − 1)

∫ +∞

0
F(T )

∫ +∞

T

ϕ(x + ls)(s − T )α−2 ds dT .

Then, Fubini’s theorem yields

l−α

∫ ∞

0

(
Iα−1
− ϕ

)
(x + t)F

(
t

l

)
dt = 1

�(α − 1)

∫ +∞

0
ϕ(x + ls)

∫ s

0
F(T )(s − T )α−2 dT ds,

(3)

as soon as Iα−1
+ (HF)(s) = 1

�(α−1)

∫ s

0 F(T )(s − T )α−2 dT is integrable in R+. This point
follows from Lemma below, proved in appendix D.

Lemma. If F satisfies H1 and H2(α), with 1 < α < 2, then
∫ s

0 F(T )(s − T )α−2 dT is
integrable in R+.

In the right-hand side of (3) we have
∫
R

ϕ(x+ls)
(
Iα−1

+ (HF)
)
(s) ds which, by theorem 1.3

of [31], is an approximation to
∫ +∞

0 Iα−1
+ (HF)(s) ds times identity in Lp due to lemma.

For ϕ in Lp]−∞, a], instead of (3) we have

l−α

∫ ∞

0

(
Iα−1
− ϕ

)
(x + t)F

(
t

l

)
dt = 1

�(α)

∫ +∞

0
ϕ(x − ls)

∫ s

0
F(T )(s − T )α−2 dT ds. (4)
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Hence the above theorem holds. It states that the limits of l−α
∫ ∞

0 f (x ± y)F
(

y

l

)
dy = l−α+1∫ ∞

0 f (x ± ly)F (y) dy coincide with left- and right-sided Marchaud’s derivatives. Formally

setting F = �j�0(−1)j
(α−1

j

)
δj would retrieve Grüunwald–Letnikov approximations to

Marchaud’s derivatives [31].
Let us now show that convolutions, akin to those of the theorem, appear when we compute

a flux in the context of Lévy flights.

3.2. Back to the flux

Expressions of the form of l−α
∫ ∞

0 f (x ± y)F∓
α,θ

(∓y

l

)
dy are present on the right-hand sides

of (1) and (2) giving the flux. Nevertheless, cumulated probabilities F−
α,θ (−.) and F +

α,θ satisfy
H2(α), but of course not H1. In fact, it is possible to find some function fα,θ such that F̃−

α,θ and
F̃ +

α,θ , defined by setting F̃−
α,θ (−y) = F−

α,θ (−y) − fα,θ (y) and F̃ +
α,θ (y) = F +

α,θ (y) − fα,θ (y),
satisfy H1. In order to keep with functions in L1, also satisfying H2(α), it is enough to
take for fα,θ any integrable function, compactly supported (e.g. in [0, 1]) and whose integral∫ +∞

0 fα,θ (y) dy is equal to Iα,θ = ∫ +∞
0 F−

α,θ (−y) dy = ∫ +∞
0 F +

α,θ (y) dy, which is possible due
to (E.2). With these notations, since scaling τ−1 = Kl−α holds, the second integral on the
right-hand side of (1), Kl−α

∫ ∞
0 P(x + y, t)F−

α,θ

(−y

l

)
dy, is equal to

Kl1−αP (x, t)Iα,θ + Kl−α

∫ ∞

0
P(x + y, t)F̃−

α,θ

(−y

l

)
dy

+ Kl−α

∫ ∞

0
(P (x + y, t) − P(x, t))fα,θ

(y

l

)
dy. (5)

Similarly, the first expression in (1), Kl−α
∫ ∞

0 P(x − y, t)F +
α,θ

(
y

l

)
dy, is equal to

Kl1−αP (x, t)Iα,θ + Kl−α

∫ ∞

0
P(x − y, t)F̃ +

α,θ

(y

l

)
dy

+ Kl−α

∫ ∞

0
(P (x − y, t) − P(x, t))fα,θ

(y

l

)
dy. (6)

Expressions containing l−αP (x, t)Iα,θ in (1) or (2) cancel each other when we take the
difference between (6) and (5). Moreover, appropriately choosing fα,θ yields that the limits of
l−α

∫ ∞
0 (P (x ±y, t)−P(x, t))fα,θ

(
y

l

)
dy (where P is fixed) are Kolwankar and Gangal’s local

fractional derivatives [41], which are less currently used than those of Riemann, Liouville,
Marchaud, Grüunwald and Letnikov, and are rapidly described in appendix C.

For α < 2, the appropriate choice of fα,θ is fα,θ (t) = Iα,θ (2 − α)(1 − t)1−αχ[0,1]; then,
we have l−α

∫ +∞
0 fα,θ (y/ l)(P (x + y, t) − P(x, t)) dy = Iα,θ l

1−α(2 − α)
∫ 1

0 (1 − s)1−α(P (x +
ls, t) − P(x, t)) ds. Consequently, when P(., t) has a local derivative (w.r.t. space) of order
α − 1 at point x+, l−α

∫ +∞
0 fα,θ (y/ l)(P (x + y, t) − P(x, t)) dy has a limit when l tends to

zero, and the limit is Iα,θ�(3 − α) times the right-sided local derivative D
KG,α−1
+ P(x, t) of

order α − 1. The same holds at the left of x: l−α
∫ +∞

0 fα,θ (y/ l)(P (x − y, t) − P(x, t)) dy

tends to −Iα,θ�(3 − α)D
KG,α−1
− P(x, t). When f is differentiable at x,DKG,α−1 ± P(x, t)

and the limits are equal to zero.
For α = 2, we have usual derivatives instead of fractional ones, the above reasoning is

no longer relevant, and we postpone to the end of subsection 4.2 the proof that the method
yields Fick’s law simply and directly. For α strictly between 1 and 2, let us now put together
the pieces of the right-hand sides of (5) and (6) in the limit l tending to zero.
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4. Fractional Fick’s law and dispersion equation

4.1. Limits of the right-hand sides of (5) and (6)

The right-hand sides of (1) and (2), computing the flux of particles from the density P(., t), are
obtained from expressions such as (5) and (6). Let us assume that P(., t) has Marchaud’s and
Kolwankar–Gangal’s derivatives of order α−1, which are integrable, bounded and continuous.
The first-order derivative may not exist everywhere, thus allowing for singularities.

Then, on the right-hand sides of (5) and (6), at least for α strictly between 1 and 2
(for the moment), l−α times the first integrals has a limit in Lp which also holds pointwise.
The limit is λ+D

α−1
+ P(x, t) for l−α

∫ ∞
0 P(x + y)F̃−

α,θ

(−y

l

)
dy in (5) and λ−Dα−1

− P(x, t) for
l−α

∫ ∞
0 P(x − y)F̃ +

α,θ

(
y

l

)
dy in (6), with

λ+ =
∫ +∞

0
Iα−1

+ HF̃ +
α,θ (y) dy, λ− =

∫ +∞

0
Iα−1

+ HF̃−
α,θ (−y)dy. (7)

For integrals Kl−α
∫ +∞

0 fα,θ (y/ l)(P (x ± y, t) − f (x)) dy, the limit is

∓KIα,θD
KG,α−1
± P(x, t),

which is zero on intervals [a, b] where P(., t) belongs to Hüolder spaces Hα−1+ε[a, b],
a fortiori if P(., t) is derivable. For parameter Iα,θ , we have the exact expression (E.2),
proved in appendix E. It agrees with numerical integrations, based upon integral expressions
[42] for stable Lévy distributions.

Oppositely, computing λ± from (7) is not easy, but can be avoided by comparing Dα−1
± f

against the limit of l−α
∫ ∞

0 (f (x ± y) − f (x))F∓
α,θ

(∓y

l

)
dy for some particular function f ,

provided it belongs to Iα−1
+ (Lp]−∞, a]) or Iα−1

− (Lp[a, +∞[). Note that the latter holds
provided the Marchaud’s derivative of order α − 1 belongs to Lp]−∞, a], or Lp[a, +∞[,
respectively. The comparison will be simpler with functions f whose local derivative of order
α − 1 is identically zero in neighbourhoods of infinity.

To achieve this, consider f = χ[1,2[ and compute λ−. Indeed, for x in ]1, 2[, the local
derivative exists and is equal to zero, while we have l−α

∫ +∞
0 (f (x+y)−f (x))F−

α,θ (−y/l) dy =
l−α

∫ +∞
2−x

F−
α,θ (−y/l) dy = Cα,−θ

(2−x)1−α

α−1 + O(l) for 1 < α < 2, with Cα,−θ being defined

by (A.2). We also have Dα−1
− χ[1,2[(x) = −1

�(1−α)

∫ +∞
2−x

y−α dy = (2−x)1−α

�(2−α)
. For x � 2, due to

Dα−1
− χ[1,2[(x) = 0,Dα−1

− χ[1,2[ belongs to Lp[1, +∞[ for 1 � p < 1
α−1 , hence χ[1,2[ belongs

to Iα−1
− Lp[1, +∞[, according to theorem 6.2 of [31]. That f (x) = Iα−1

2,−
(

(2−x)1−α

�(2−α)

)
holds also

can be checked directly with pen and paper. Hence, we have λ− = −�(2−α)

α−1 Cα,−θ = sin π
2 (α+θ)

sin πα
,

and similarly λ+ = sin π
2 (α−θ)

sin πα
.

4.2. Fractional Fick’s law

For sufficiently well-behaved functions (in Lp(R) ∩ Hα−1+ε(R)) the Kolwankar and Gangal’s
derivative exists and is identically zero. Then, the limit Q(x, t) of mapping ‘flux through x’
∞Wα,θ

l,τ (x, t), given by (1) for random walks in unbounded domains, is

f �→ K

(
sin π

2 (α − θ)

sin πα
Dα−1

+ f (x) − sin π
2 (α + θ)

sin πα
Dα−1

− f (x)

)
, (8)

in agreement with [24]. We know from [20] that, when τ and l tend to zero while satisfying
the it scaling lα/τ = K , the concentration of a cloud of particles performing Lévy flights
in an infinite medium without any source or sink tends to a limit, which can be computed



8306 M C Néel et al

from Laplace–Fourier analysis. The thus obtained density is derivable, hence (8) holds.
Nevertheless, even is an infinite medium, possibly existing sources can be incorporated into
the above reasoning, which only uses the dynamics of particles once they have been launched in
the medium and run the random walk. Thus introduced singularities may result in densities that
are not derivable near sources. For such situations we need an expression of the macroscopic
flux, valid for concentrations, which may fail to be derivable at some points. In an infinite
medium, it is given by mapping Q(x, t) with

Q(x, t)P = K

(
sin π

2 (α − θ)

sin πα
Dα−1

+ P(x, t) − sin π
2 (α + θ)

sin πα
Dα−1

− P(x, t)

)
−KIα,θ�(3 − α)

[
DKG,α−1

+ P(x, t) + D
KG,α−1
− P(x, t)

]
, (9)

which is a fractional variant of Fick’s law, slightly more general than (8). Since Fourier’s
symbol of Dα−1

± is (∓ik)α−1 [31], the non-local part
sin π

2 (α−θ)

sin πα
Dα−1

+ − sin π
2 (α+θ)

sin πα
Dα−1

− has
Fourier’s symbol |k|α−1 eisgn(k)(θ+1)π/2, which [24] obtained for derivable functions, of course
satisfying D

KG,α−1
± P(., t) = 0 identically.

In a semi-infinite domain limited by a reflective barrier, according to (2) the flux is equal
to ∞Wα,θ

l,τ (x, t)P ∗ − Kl−α
∫ +∞

0 ((1 − H)P ∗)(x − y, t)(F−
α,θ (−y/l) − F +

α,θ (y/ l)) dy. Due to
the theorem, in the diffusive limit l−α

∫ +∞
0 (1 − H)P ∗(x − y, t)

(
F−

α,θ (−y/l) − F +
α,θ (y/ l)

)
dy

tends to (λ− − λ+)Dα−1
+ ((1 − H)P ∗)(x). Hence, the macroscopic flux is

Q(x, t)P = K

[
sin π

2 (α − θ)

sin πα

(
Dα−1

+ P
)
(x, t) − sin π

2 (α + θ)

sin πα

(
Dα−1

− P ∗)(x, t)

]

+ K
sin π

2 (α + θ) − sin π
2 (α − θ)

sin πα
Dα−1

+ ((1 − H)P )(x, t)

−KIα,θ�(3 − α)
[
DKG,α−1

+ P(x, t) + D
KG,α−1
− P(x, t)

]
, (10)

also equal to

K

(
sin π

2 (α − θ)

sin πα

)
∂x

∫ +∞

x

P (y)(y − x)2−α dy +
sin π

2 (α + θ)

sin πα
∂x

∫ x

−∞
P ∗(y)(x − y)2−α dy

+ K

(
sin π

2 (α + θ)

sin πα
− sin π

2 (α − θ)

sin πα

)
∂x

∫ 0

−∞
P(−y)(x − y)2−α dy

−KIα,θ�(3 − α)
[
DKG,α−1

+ P(x, t) + D
KG,α−1
− P(x, t)

]
, (11)

provided P decreases to zero rapidly at infinity.
For α = 2, the method has to be slightly adapted but still yields Fick’s law. At the end

of subsection 3.2, we pointed out that the case α = 2 has to be considered separately. To
do this, take A(l) as a function, tending to +∞ when l tends to zero, with lA(l) tending to
zero: for instance, we can choose A(l) = l−1/2. Parameter θ is equal to zero, L0

α is even and
superscripts ± in F±

2,0 are of no use: instead we put F2,0. It is enough to consider the case of

an infinite medium, since 0Wα,0
l,τ (x, t)P is equal to ∞Wα,0

l,τ (x, t)P ∗. We have

l−2
∫ +∞

0
F2,0

(y

l

)
(P (x + y, t) − P(x, t)) dy = l−1

∫ +∞

0
F2,0(y)(P (x + ly, t) − P(x, t)) dy

=
∫ A(l)

0
yF2,0(y)

P (x + ly, t) − P(x, t)

ly
dy

+ l−1
∫ +∞

A(l)

F2,0(y)(P (x + ly, t) − P(x, t)) dy.
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If P(., t) is differentiable at point x,
∫ A(l)

0 F2,0(y)
P (x+ly,t)−P(x,t)

ly
dy tends to the usual derivative

∂xP (x, t), times
∫ +∞

0 F2,0(y)y dy, itself equal to 1/2 due to F2,0(x) = ∫ +∞
x

1
2
√

π
e−y2/4 dy.

And l−1
∣∣ ∫ +∞

A(l)
F2,0(y)(P (x+ly, t)−P(x, t)) dy

∣∣ is less than l−2F2,0(A(l))
∫ +∞
lA(l)

P (x+y, t) dy+

P(x, t)l−1
∫ +∞
A(l)

F2,0(y) dy, which tends to 0 when P(., t) is fixed in L1. Similar results are
obtained at the left of x; hence for α = 2, in the limit ‘l tends to zero’ operator flux tends to
−K∂xP (x, t), in agreement with classical Fick’s law.

The more general fractional version implies a space-fractional variant of the classical
diffusion equation.

4.3. Space-fractional diffusion equation

When the density of particles and the macroscopic flux are derivable, mass conservation
without sources implies ∂tP (x, t) = −∂xQ(x, t). Moreover, we have ∂xD

α−1
± = ±Dα

±, and
local Kolwankar–Gangal derivatives with order of less than 1 are identically zero. Hence, in
an infinite medium, we deduce from (8) and (9) that P evolves according to

∂tP (x, t) = −K

[
sin π

2 (α − θ)

sin πα
Dα

+P(x, t) +
sin π

2 (α + θ)

sin πα
Dα

−P(x, t)

]
. (12)

The right-hand side of (12) is equal to

− K

�(2 − α)
∂x2

[
sin π

2 (α − θ)

sin πα

∫ x

−∞
(x − y)2−αP (y, t) dy

+
sin π

2 (α + θ)

sin πα

∫ +∞

x

(y − x)2−αP (y, t) dy

]
,

which is K times the Riesz–Feller derivative ∇α,θ
x P of order α and skewness parameter θ

[39, 43–45]. We thus retrieve the fractional dispersion equation which had been obtained via
Fourier’s analysis, from the generalized master equation for the density of particles performing
possibly skewed Lévy flights.

In a medium, limited by a reflective barrier, we obtain

∂tP (x, t) = −K

[
sin π

2 (α − θ)

sin πα
Dα

+P ∗(x, t) +
sin π

2 (α + θ)

sin πα
Dα

−P(x, t)

]

−K
sin π

2 (α − θ) − sin π
2 (α + θ)

sin πα
Dα

+ ((1 − H)P ∗)(x, t). (13)

Also the right-hand side of (13) is

− K

�(2 − α)
∂x2

[
sin π

2 (α − θ)

sin πα

[∫ x

0
(x − y)2−αP (y, t) dy +

∫ +∞

x

(x + y)2−αP (y, t) dy

]

+
sin π

2 (α + θ)

sin πα

∫ +∞

x

(y − x)2−αP (y, t) dy

− K

�(2 − α)

sin π
2 (α − θ) − sin π

2 (α + θ)

sin πα

∫ ∞

0
(x + y)2−αP (y, t) dy

]
.

For symmetric random walks (with θ = 0) we retrieve a result of [28, 29] with, on
the right-hand side, K∇α,θ

x HP , plus diffintegrals with kernel (x + y)2−α , which account for
the influence of the wall. That (13) represents the evolution of the concentration of walkers
had been checked in [29] by comparing the discretized solution of the partial differential
equation (13) against Monte Carlo simulations of symmetric Lévy flights.
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Figure 1. Numerical solution of (13), compared with the Monte Carlo simulation of skewed Lévy
flights with a reflective barrier, for α = 1.5, with θ = 0.2. Full line represents the numerical
solution to (13) with K = 1 at instant t = 4 and circles stand for random walk histograms.
Histograms at time t = 1 correspond to symbols ‘plus’.
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Figure 2. Numerical solution of (13), compared with the Monte Carlo simulation of skewed Lévy
flights with a reflective barrier, for α = 1.5, with θ = −0.2. Full line represents the numerical
solution to (13) with K = 1 at instant t = 4 and circles stand for random walk histograms.
Histograms at time t = 1 correspond to symbols ‘plus’.

4.4. Numerical illustration of (13)

In order to solve (13), derivatives of order α were discretized according to a shifted Grüunwald–
Letnikov scheme [44, 45], and we have set K = 1, as in [29]. The issue was compared with
histograms of Lévy flights corresponding to small values of τ and l satisfying τ = lα . In order
to keep coherent data, we had to take into account that Dirac impulses are easy to implement in
Monte Carlo simulations, but not in the discretized partial differential equation (13). Hence,
numerical simulations of (13) were started at time t = 1 from corresponding histograms,
represented by symbols ‘plus’ in figures 1 and 2. Random walks were started at t = 0 from
Dirac impulses applied at x = 5.
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We observe that already at instant t = 1 the maximum of the density of particles has
moved from initial impulse’s location x = 5 to the left for θ = 0.2, and to the right for
θ = −0.2. The trend is confirmed at larger values of t, but for positive-valued θ the peak of
the distribution of particles is perturbed by the wall (at x = 0).

5. Conclusion

For a cloud of particles, performing one-dimensional Lévy flights with time and length scales
τ and l satisfying τ = Klα , the mass flux through the abscissa x is a difference between
convolutions involving the density of walkers. Convolutions have kernels, which are cumulated
probabilities P{Y > y} and P{Y < −y} for a jump to be directed to the right or to the left and
to have an amplitude |Y | larger than y. Hence, they behave asymptotically as y−α , with α being
the stability exponent of the considered Lévy flights. Kernels also incorporate dilatation by 1/l

and amplification by l−α . We showed that, in the limit when l tends to zero, convolutions of this
form tend to fractional derivatives of order α − 1, provided kernels have integrals (computed
over ]−∞, 0] and [0, +∞[) equal to zero. Kernels, present in the flux, do not match this
condition, but we could use the result by cutting the convolutions into two parts, local and
non-local. That distribution functions of stable Lévy laws on the left and on the right have
equal integrals over ]−∞, 0] and [0, +∞[, even when they are skewed was essential for that.

This way, we showed that, in the diffusive limit and within the context of Lévy flights,
the mass flux is a combination of fractional derivatives of the concentration of walkers. We
have usual derivatives of order α − 1, defined by integrals over half-lines, at the left and at
the right of point x where the flux is considered. We also have local Kolwankar–Gangal’s
derivatives, which are only visible at points, if there are, where the density of particles cannot
be represented by a function, possessing derivatives of order larger than α − 1. Such a
possibility may occur at points where sources or sinks are applied, or represent absorbing or
adsorbing boundaries. Hence, a fractional generalization of Fick’s law was derived, without
passing through any partial differential equation for the time evolution of the concentration.

The thus obtained fractional Fick’s law, when recast into mass conservation principle,
yields such a partial differential equation, provided local derivatives are zero, and in fact the
condition was satisfied in all circumstances where space-fractional dispersion equations were
previously derived. That the method applies to situations with boundaries, so that Fourier’s
analysis is not simple, was illustrated by a non-trivial example.

Appendix A. Densities of alpha stable Lévy laws

Stable laws generalize Gaussian statistics [33, 35]. In many occasions, the word ‘stable’ refers
to some property, invariant under a definite set of transformations, and here we consider that
dilatations and translations do not affect qualitatively a given probability law. We use the
word ‘stable’ for laws, which keep similar under the addition of independent identical random
variables, up to dilatations and translations. For precise definitions, we refer to [33, 35].

When the random variable X is stable, with law F, for any sequence of independent
random variables Xi distributed like X, there exists a sequence cn of positive numbers such
that X1+···+Xn

cn
be distributed according to F itself for any positive integer n [33, 35]. Moreover,

cn is a power of n, and the inverse α of the exponent belongs to ]0, 2] and serves as a label for
the law: it is called the stability exponent of the α stable law. The value α = 2 corresponds to
normal law, which is symmetric. For α ∈ ]0, 2[, stable laws may be symmetric or skewed.

Stable laws play an important role in Nature because they are attractors, again in the
context of the addition of many independent random variables Xn, distributed according to
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law F. Probability law G is an attractor for F if there exist sequences An and Bn, with Bn > 0,
such that the law of X1+···+Xn

Bn
− An tends to G when n tends to ∞ [33].

Loosely speaking, α-stable laws are attractors for probability laws whose density behaves
asymptotically as x−α−1 if α belongs to ]0, 2[, normal law (with α = 2) is an attractor for
probability laws whose asymptotics is x−γ−1 with γ � 2 [33, 35].

Except for some values (e.g. α = 1 or 2), the density of a stable law cannot be given in
closed form. But, up to translations and dilatations, the Fourier transform is e−|k|αeisign(k)πθ/2

.
Hence, the corresponding density Lθ

α satisfies Lθ
α(−x) = L−θ

α (x). It is labelled by the stability
exponent α, and the skewness parameter θ , which satisfies |θ | � min(α, 2 − α), and hence
belongs to [α − 2, 2 − α] for α in ]1, 2].

In neighbourhoods of +∞, except for α = 2, Lθ
α behaves as a negative power of the

variable [39, 46]. For α strictly between 1 and 2 with α−2 < θ � 2−α, provided x > A > 0
holds with A large enough, we have

Lθ
α(x) = 1

πx
�+∞

n=1(−x−α)n
�(1 + nα)

n!
sin

nπ

2
(θ − α). (A.1)

We will denote by

Cθ
α = −1

π
�(1 + α) sin

π

2
(θ − α) (A.2)

the coefficient of the leading term in expansion (A.1).

Appendix B. Riemann–Liouville fractional integrals and derivatives

The definition and essential properties are in [31, 40]. Since notations are not universal, we
recall those which we use here. Let α′ be positive: the left-sided fractional integral of order
α′, computed over [a, x], is

Iα′
a,+ϕ(x) = 1

�(α′)

∫ x

a

(x − y)α
′−1ϕ(y) dy (B.1)

according to [31]. Here we focus on the case a = −∞, with the simplified notation
Iα′

+ ϕ(x) = Iα′
−∞,+ϕ(x) of [40]. Right-sided integrals are

Iα′
b,−ϕ(x) = 1

�(α′)

∫ b

x

(y − x)α
′−1ϕ(y) dy (B.2)

with Iα′
− ϕ(x) = Iα′

+∞,−ϕ(x).
The corresponding left-sided Riemann–Liouville derivative of order α′ is

Dα′
+ ϕ(x) =

(
d

dx

)[α′]+1

I 1−{α′}
+ =

(
d

dx

)[α′]+1 1

�([α′] + 1 − α′)

∫ x

−∞
(x − y)−{α′}ϕ(y) dy,

(B.3)

where [.] denotes integer part, while {.} is defined by α′ = [α′] + {α′}. The right-sided
Riemann–Liouville derivative is

Dα′
− ϕ(x) =

(
− d

dx

)[α′]+1

I
1−{α′}
−

=
(

− d

dx

)[α′]+1 1

�([α′] + 1 − α′)

∫ +∞

x

(y − x)−{α′}ϕ(y) dy. (B.4)

When α′ is a positive integer, Dα′
− and Dα′

+ are usual right and left-sided derivatives or order
α′. A natural question is whether fractional derivatives defined by (B.3) and (B.4) share with
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derivatives of integer order the property of being left inverses to the corresponding integrals.
In fact, when ϕ is in L1

loc(R), if moreover integrals I
[α′]+1
± are absolutely convergent, we have(

Dα′
± Iα′

± ϕ
)
(x) = ϕ(x) a.e., due to lemma 4.7 in [40]. When the above hypotheses are satisfied,

Dα′
± can be thought of as being a left inverse to Iα′

± , which fails to hold if I 1
±ϕ and I

[α′]+1
± ϕ do

not belong to L1(R), even for ϕ in Lp(R) with 1 < p < 1/α′. Marchaud’s definition seems
to give a more appropriate left inverse to fractional integrals.

Marchaud’s definition combines generalized finite differences and fractional integrals.
A rather general definition of finite differences �n

t was used by [40], in view of complex
orders of derivation. Here we only need real-valued orders, and it is enough to take
a definition connected with translations Tt of amplitude t. Here, the definition of �n

t is
(Id −Tt )

nf (x) = �n
j=0

(n

j

)
(−1)jf (x − j t), which becomes f (x − t)−f (x) for n = 1. With

these notations, Marchaud’s derivative Dα′
± of function f is the limit, when ε → 0+ of

Dα′
±,εf (x) = 1∫ +∞

0 t−α′−1(1 − e−t )n dt

∫ +∞

ε

t−α′−1�n
±t f (x) dt, (B.5)

with n > α. For 0 < α′ < 1, we have n = 1 and (B.5) becomes Dα′
±,εf (x) =

−1
�(−α′)

∫ +∞
ε

t−α′−1[f (x) − f (x ∓ t)] dt . For α′ = 1, we have to put n = 2 in (B.5) if we

want to use this expression, but we can also consider that Dα′
± is the usual left- or right-sided

derivative of order α′ when α′ is a non-negative integer.
We thus have a left inverse for Iα′

± in a wider domain, which in some sense is optimal,
since it provides a characterization of Iα′

± Lp for 1 < p < 1/α′. Indeed, for 0 < α′ < 1,
theorem 6.2 of [31] states the following: if the Lp(R) limit of Dα′

±,εf exists when ε → 0+,
or if supε>0

∥∥Dα′
±,εf

∥∥
Lp(R)

is finite, if moreover, f belongs to Lp(R) with 1 � r < ∞, then

f belongs to Iα′
± Lp(R) and there exists ϕ s.t. f (x) = Iα′

± ϕ(x) almost everywhere in R. The
theorem was stated in Lp(R), but the proof adapts without any modification to Lp]−∞, a]
for Dα′

+ and to Lp[a, +∞[ for Dα′
− . Derivatives Dα′

± and Dα′
± coincide for functions of the form

Iα′
± ϕ with ϕ in L1

loc such that I
[α′]+1
± converges absolutely [40].

Other expressions yield the left inverse of Iα′
± . Among them, the Grüunwald–Letnikov

fractional derivative [31] or order α′ of f is the limit, when mesh h tends to zero, of h−α′
times

the series �∞
k=0(−1)k

(α′

k

)
f (x − kh). It provides useful approximations to Riemann–Liouville

and Marchaud’s derivatives, connected with finite differences numerical schemes.

Appendix C. Kolwankar and Gangal’s local fractional derivatives

The notion of a local fractional derivative was introduced [41] in view of building a tool,
designed for the study of continuous but nowhere differentiable functions frequently occurring
in Nature and economics. Those fractional derivatives share some properties with previously
defined ones, such as chain rule or generalized Leibniz rule [47]. They are very useful for to
compute fractal dimensions of graphs. In fact, we will see that they vanish for smooth enough
functions, and hence can become ‘invisible’.

For q between 0 and 1, the right-sided Kolwankar and Gangal’s [41] fractional derivative
of order q of function f , computed at x, is

D
KG,q
+ f (x) = lim

h→0+

d

dh
I

1−q
x,+ (f (.) − f (x))(x + h).

The definition makes sense when f is continuous in [x, x + ε], while moreover function
I

1−q
x,+ (f (.) − f (x))(x + h) (of the variable h) is derivable in [0, ε], with positive ε. When
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the above limit exists, it is also equal to the limit, when h tends to 0+, of h−1I
1−q
x,+ (f (.) −

f (x))(x + h), due to l’Hôpital’s rule. Indeed, we have h−1I
1−q
x,+ (f (.) − f (x))(x + h) =

h−q

�(1−q)

∫ 1
0 (1 − t)−q(f (x + th) − f (x)) dt . Note that if f is continuous in [x, x + ε], with

limh→0+
f (x+h)−f (x)

hq = a, this implies D
KG,q
+ f (x) = a.

At the left, similarly we have

D
KG,q
− f (x) = lim

h→0+

d

dh
I

1−q
x,− (f (x) − f (.))(x − h),

also equal to the limit, when h tends to 0+, of h−1I
1−q
x,− (f (x) − f (.))(x − h). If, for positive

and finite b−a and with q < q +ε < 1, the function f belongs to Hölder space Hq+ε[a, b], so
that supx,y∈[a,b]

( |f (y)−f (x)|
|y−x|q+ε

)
is finite, we immediately see that Kolwankar and Gangal’s local

derivatives of order q are zero in [a, b]. Functions f that are derivable everywhere on an
interval, except at the right of point x0 (in the interior or at a boundary) where they behave
as a(x − x0)

q , have a right-sided Kolwankar and Gangal’s derivative everywhere: it is zero,
except at x0+, where it is equal to a times a constant.

Appendix D. Proof of the lemma

Lemma. If F satisfies H1 and H2(α), with 1 < α < 2, then
∫ s

0 F(T )(s − T )α−2 dT is
integrable in R+.

Proof. Set α′ = α − 1. If F is as F1 in hypothesis H2(α)’s statement, lemma 4.12 of [40]
shows that

�(α′)I α′
− (HF)(s) =

∫ s

0
F(T )(s − T )α

′−1 dT

is in L1. Hence, it is enough to prove the present lemma for F = − 1
α′ χ[0,1] + x−α′−1χ[1,+∞[,

since modifying F1 will immediately lead to the general case. Then, we have∫ x

0
(x − y)α

′−1χ[0,1](y) dy = xα′ − (x − 1)α
′

α′

for x > 1, and ∫ x

0
(x − y)α

′−1y−α′−1χ[1,+∞[(y) dy = x−1

(
G(1) − G(1/x) +

xα′ − 1

α′

)

when x is large enough, with G being defined by G(X) = ∫ X

0 [(1− z)α
′−1 −1]z−α′−1 dz. From

this we deduce∫ x

0
F(t)(x − t)α

′−1 dt = α′−1(xα′−1 − α′−1xα′
(1 − (1 − 1/x)α

′
))

+ x−1(G(1) − α′−1) − x−1G(1/x). (D.1)

�

Function (1−t)α
′−1−1
t

is continuous and integrable in [0, 1[. In the neighbourhood of 0,

(1−t)α
′−1−1
t

t−α′
is equivalent to (1 − α′)t−α′

, hence G(1/x) is equivalent to xα′−1 when x
is large. Hence x−1G(1/x) is integrable in a neighbourhood of +∞. It is also the case for
α′−1[xα′−1 −α′−1xα′

(1−(1−1/x)α
′
). We now will check that G(1)−α′−1 is zero. To see this,
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set g(p, q) = ∫ 1
0 ((1 − t)q−1 − 1)tp−1 dt . For complex-valued p and q satisfying Re(p) > 0

and Re(q) > 0,
∫ 1

0 (1 − t)q−1tp−1 dt is a Bernoulli beta function [48] and we have

g(p, q) = �(p)�(q)

�(p + q)
− 1

p
. (D.2)

Let us fix q = α′ and vary the complex number p: tp is a function of p, whose derivative
tpLn(t) is dominated by the L1]0, 1[ function tp|Ln(t)| for Re(p) � p0 > −1, so that,
by dominated convergence, g(p, α′) is derivable with respect to p. Hence it is analytic for
Re(p) � p0 > −1. Since �(q)

�(p+q)
is also analytic in the neighbourhood of 0 while �(p) has a

simple pole with residue 1, the right-hand side of (D.2) is holomorphic for Re(p) � p0 > −1.
Hence relation (D.2) holds for p = −α′, and the lemma is proved.

Appendix E. Integrals of cumulated alpha stable Lévy laws

Due to symmetry, integrals
∫ +∞

0 F +
α,θ (y) dy and

∫ +∞
0 F−

α,θ (−y) dy are equal for θ = 0. In fact,
and this point is essential for us, this equality holds for all admissible values of θ . Let us prove
the claim.

First, note that F−
α,θ (−x) = ∫ −x

−∞ Lθ
α(y) dy = ∫ +∞

x
L−θ

α (−y) dy = F +
α,−θ (x). Then, we

will uses Mellin’s transform, defined by Mω(z) = ∫ +∞
0 t z−1ω(t) dt for the function ω. With

z = 1 we see that
∫ +∞

0 F +
α,θ (y) dy = MF +

α,θ (1), while we have F +
α,θ (x) = I 1

−L−θ
α (x), hence∫ +∞

0 F +
α,θ (y) dy = (

MI 1
−L−θ

α

)
(1).

For z > 1 and sufficiently good-behaved functions in neighbourhoods of ∞, such as Lθ
α ,

we have (
MI 1

−ω
)
(z) = �(z)

�(z + 1)
(Mω)(z + 1),

for z < α according to [40, p 44]. From this, due to F +
α,θ (x) = ∫ +∞

x
Lθ

α(y) dy = I 1
−Lθ

α(x), we
deduce (

MFd
α,θ

)
(z) = �(z)

�(z + 1)

(
MLθ

α

)
(z + 1).

The Mellin transform MLθ
α is given in [46]

(
MLθ

α

)
(z) = 1

α

�(z)�((1 − z)α−1)

�
(
(1 − z)α−θ

2α

)
�

(
1 − (1 − z)α−θ

2α

) ,

which is of the form(
MLθ

α

)
(z) = 1

πα
�(z)�

(
1 − z

α

)
sin

(
(1 − z)π

α − θ

2α

)
(E.1)

due to complements formula for Gamma functions [48]. In fact, (E.1) for 0 < Re(z) < 1
has been proved in [46]. Nevertheless, MLθ

α(z), as a function of z, is holomorphic for
0 < Re(z) < α + 1, due to the behaviour of Lθ

α(x) for large real values of x. On the right-hand
side of (E.1), �(z)�((1 − z)α−1) is holomorphic also except at poles of �((1 − z)α−1), which
means that we have to exclude 1 from {z ∈ C/0 < Re(z) < α+1}. Then, analytic continuation
extends (E.1) to {z ∈ C/0 < Re(z) < α + 1} − {1}.

From this we deduce
∫ +∞

0 F +
α,θ (y) dy = (

MF +
α,θ

)
(2)

= �(2)�(−1/α)

απ
sin π

θ − α

2α
= −�(−1/α)

απ
cos π

θ

2α
. (E.2)

We see that
∫ +∞

0 F +
α,θ (y) dy is an even function of θ , hence the claimed result.
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